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Abstract—Despite the combined effort, the COVID-19 pan-
demic continues with a devastating effect on the healthcare
system and the well-being of the world population. With a lack
of RT-PCR testing facilities, one of the screening approaches
has been the use of is chest radiography. In this paper, we
propose an automatic chest x-ray image classification model
that utilizes the pre-trained CNN architecture (DenseNet121,
MobileNetV2) as a feature extractor, and wavelet transformation
of the pre-processed images using the CLAHE algorithm and
SOBEL edge detection. Our model can detect COVID-19 from
x-ray images with high accuracy, sensitivity, specificity, and
precision. The result analysis of different architectures and
a comparison study of pre-processing techniques (Histogram
Equalization and Edge Detection) are thoroughly examined. In
this experiment, the Support Vector Machine (SVM) classifier
fitted most accurately (accuracy 97.73%, sensitivity 97.84%, F1-
score 97.73%, specificity 97.73%, and precision 98.79%) with a
wavelet and MobileNetV2 feature sets to identify COVID-19. The
memory consumption is also examined to make the model more
feasible for telemedicine and mobile healthcare application.

Index Terms—COVID-19, Feature extraction, Wavelet trans-
form, Histogram Equalization, Edge detection, DenseNet121,
MobileNetV2

I. INTRODUCTION

The COVID-19 pandemic has been causing devastating
effects in the health systems worldwide. It was declared a
pandemic by the World Health Organization (WHO) in early
March 2020 [1]. It is caused by the SARS-CoV-2 virus,
which is a member of the Coronavirus family. It shares
about 79% and 50% genomic similarity with SARS-CoV and
MERS-CoV, respectively. COVID-19 is a highly contagious
respiratory virus. The main symptoms of infected patients
are fever, cough, fatigue, and gastrointestinal infection.
The elderly and people with underlying diseases are more
susceptible to the Coronavirus and can suffer from acute
respiratory distress syndrome (ARDS) and cytokine storm at
the end.

There are several testing protocols for the diagnosis of
COVID-19 by WHO [2]. The standard method is RT-PCR. It
is typically done by a nasopharyngeal swab, and the results
can be obtained within a few hours to two days. Automated

assay from Abbott Diagnostics uses an isothermal nucleic
acid amplification method [3]. Serology methods are in the
stage of development [4]. RT-PCR is a time consuming,
costly, laborious, and complicated process of testing. It has a
positivity rate of 63% [5]. Many countries are suffering from
incorrect detection of patients with COVID-19. Many patients
are not being tested, and also the testing method needs much
time. The high expense of the testing kit, insufficient amounts
of testing kits, and professionals for sample collection and
testing biosafety labs cause a delay in testing. This delay can
increase the number of infected patients and can cause severe
harm to infected patients.

The majority of COVID-19 radiographic images have
similar features. Mainly the bilateral, multifocal, ground-glass
opacities with peripheral or posterior distribution, in lower
lobes, in the early stage, and pulmonary consolidation in the
late stage are noticed in these images [6]–[10]. A chest x-ray
is considered as one of the imaging methods for respiratory
disease diagnosis. In the early stage of COVID-19 infection,
the radiographic report may show normal, but in the late
stages of infection, it may show several resemblances with
pneumonia or acute respiratory distress syndrome. The main
findings of chest x-ray radiographic images are bilateral
multifocal consolidations progressing to the entire lungs and
also pleural effusions. Though chest x-ray is a less sensitive
modality (69%) [11] than CT images, its availability and
cost-effectiveness can help in the diagnosis of COVID-19
both in developing and underdeveloped areas. It also can be
an effective tool for teleradiology and portable radiography,
which can further be used in telemedicine platforms for
the improvement of treatment in remote areas. This rapid
growth of medical image data quantity requires extensive and
tedious efforts by the radiologists. An alternative solution is
using machine learning (ML) techniques can thus be effective
in assisting the radiologists in making the diagnostic decisions.

There are several machine learning methods available to
identify COVID-19 from x-ray images. Automated COVID-19
detection from x-ray images using transfer learning method
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has achieved accuracy 96.78% on 2 class and 94.72% on
3 class using MobileNetV2 [12]. DarkCovidNet model has
claimed accuracy of 98.08% and 87.02% for binary and multi-
classes and has generated heatmaps that can help them to
locate the affected regions on chest x-rays [13]. Another deep
learning convolutional neural network (CNN) architecture,
CovidNet has obtained 93.3% accuracy on the test dataset for 3
class classification [14]. A capsule network-based framework,
COVID-CAPS, has achieved an accuracy of 95.7%, Sensitivity
of 90%, Specificity of 95.8% [15]. CovXNet is a multi-dilation
CNN which detects COVID-19 and pneumonia using trans-
ferable multi-receptive feature optimization and has claimed
90.2% accuracy for multiclass COVID/Normal/Viral/Bacterial
pneumonia [16]. COVID-MobileXpert is another lightweight
deep neural network which is designed on a framework
including a pre-trained attending physician network for feature
extraction and can perform on-device COVID-19 screening
[17].
In this paper, we propose a two-stream approach for the
classification of chest x-ray images of normal, pneumonia, and
COVID-19 pneumonia. We utilize histogram normalization
and edge detection as pre-processing steps. Subsequently, fea-
tures are extracted in parallel using discrete wavelet transform
and the DenseNet121/MobileNetV2 architecture, respectively.
The combined features are then classified employing a support
vector machine (SVM). The performance in classification
is studied on publicly available data of 2,940 chest x-ray
images containing 1000 normal, 1000 pneumonia, and 940
COVID-19 pneumonia cases using well-known metrics. It
is shown that excellent performance can be achieved using
both architectures with pre-processing and wavelet transform,
MobileNetV2 yielding better results.

II. MATERIALS AND METHODS

A. Dataset

The data used in our experiments are collected from differ-
ent open-access resources [18]–[20]. A total of 2, 940 chest
radiography images are accumulated, where 940 images are
of COVID-19 case, 1000 of Pneumonia, and 1000 of Normal.
70% of data are used for training and 30% of data are used for
validating the results. As the COVID-19 chest x-ray images are
collected from different publicly available datasets, automatic
analysis to find similar images and exclude duplicate images
is done in this case.

B. Proposed Method

The model proposed method is depicted in Fig. 1.
1) Pre-processing: Pre-processing steps such as image en-

hancement and edge detection have been shown to improve
performance in medical image analysis [21]. In this paper,
the x-ray images are first converted to a suitable grayscale
format and re-sampled to a size of 224× 224 [22]. Next, the
data is pre-processed using the CLAHE histogram equalization
algorithm and edge detection using the SOBEL method. In
this work, we use the Contrast Limited Adaptive Histogram
Equalization (CLAHE), which reduces image variability by

Fig. 1: A schematic flow-diagram of the proposed chest x-ray
image classification method for COVID-19 detection.

clipping the image histogram at a predefined value before
calculating the cumulative distribution function (CDF) and
redistribute this part of the image equally among all the
histogram bins [23], [24]. Next, we use the Sobel method for
edge detection. The Sobel method is used to find sharp edges
using thresholding the gradient [25].

2) Wavelet Transformation: An x-ray image is decomposed
into horizontal, vertical, and diagonal sub-bands using the
Haar wavelet. The extracted wavelet of the x-ray images coef-
ficients are considered as input features to the SVM classifier
since the single-level decomposition can yield image details in
different directions which can enhance the classification. The
coefficients in different sub-bands are then concatenated and
converted to a 2D array.

3) DenseNet121 Feature Extraction: To improve the re-
sults, feature extraction is performed on edge detected image
using a pre-trained DenseNet121 architecture. This network
[26], is trained on the ImageNet dataset, renowned for pre-
training most of the pre-trained model. DenseNet121 structure
has 4 dense blocks on 224 × 224 input images. The initial
convolution layer comprises 2k convolutions of size 7×7 with
stride 2, where k is a hyperparameter denoting the growth rate
of the network. The number of feature-maps in all other layers
also follows from setting k. The input layer of this model takes
an image in the size of (224 x 224 x 3), and the output layer
is a softmax prediction on 1000 classes. From the input layer,
16 blocks and the last ReLU layer is regarded as the feature
extraction part of the model.

4) MobileNetV2 Feature Extraction: Similar to
DenseNet121, feature extraction is again performed using a
pre-trained MobileNetV2 architecture for better and simpler
computation. This network [27], is trained on the ImageNet
dataset, renowned for pre-training and deployment in different
low-power, limited-computing devices [28]. The architecture
of MobileNetV2 contains the initial fully convolution layer
with 32 filters, followed by 19 residual bottleneck layer.
As both DenseNet121 and MobileNetV2 are trained on the
ImageNet dataset, input and output layers are the same. From
the input layer, 16 blocks and the last ReLU layer is regarded
as the feature extraction part of the model.

5) Classifier: In this experiment, the pre-trained models are
used for extracting the features to create data frames. The
data frames are divided into training (70%) and testing (30%)
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TABLE I: Result analysis of 3 class classification for different setup with SVM classifier

Classifier Accuracy Sensitivity Specificity Precision F1-Score
Wavelet 0.9206 0.9220 0.9206 0.9605 0.9209

Pre-processing + Wavelet 0.9274 0.9315 0.9274 0.9620 0.9270
DenseNet121 0.9671 0.9675 0.9671 0.9835 0.9671

Pre-processing + DenseNet121 0.9422 0.9421 0.9422 0.9709 0.9419
Pre-processing + DenseNet121 + Wavelet 0.9615 0.9627 0.9615 0.9807 0.9614

MobileNetV2 0.9501 0.9504 0.9501 0.9747 0.9500
Pre-processing + MobileNetV2 0.9569 0.9573 0.9569 0.9777 0.9567

Pre-processing + MobileNetV2 + Wavelet 0.9773 0.9784 0.9773 0.9879 0.9773

subset. The results shown in this paper are from the validation
of these test data subset using support vector machine (SVM)
classifier. The sigmoid kernel is used in this experiment to do
the three-class classification using different feature sets.

III. RESULTS

Experiments are conducted using different feature sets
and with/without pre-processing of image. The results of the
validation using SVM classifier are provided in Table. I.

The proposed framework is implemented in TensorFlow
and Keras. The system is accelerated by a Google Co-
laboratory cloud GPU Nvidia K80. The Adam optimizer
is used while training, and the learning rate is set to 1e-4.
Using DenseNet121 and MobileNetV2 architecture, class
activation heatmaps are generated. The highlighted sections
in the images of pneumonia and COVID-19 x-ray in Fig.
2 indicates that these sections can be used as important
features to detect pneumonia and COVID-19. These findings
also matches the clinical notes of radiology image analysis
[29], [30]. In Table I, using only wavelet features with pre-
processing shows better accuracy than without pre-processing
of images. Pre-processing improves the obtained features
and thus improves the classification results. The results of
DenseNet121 feature set are shown, where we can notice that
pre-processing does not improve the results of classification.
Using MobileNetV2, the significance of pre-processing can be
noticed properly. In this case, the pre-processing of the image
increases the accuracy, sensitivity, specificity, precision, and
F1-score. Adding the wavelet features increases the results
significantly. Using DenseNet121 and Wavelet features (with
pre-processing) the accuracy is about 96.15% whereas the
accuracy is increased to 97.73% using MobileNetV2 and
wavelet features (with pre-processing). Though MobileNetV2
is smaller in size, the dimension of the feature set is
increased. For this reason, the accuracy is much better-using
MobileNetV2 for the increased dimension.

As the model is proposed for the main utilization of
telemedicine platforms and Mobile health care, memory
consumption is examined to ensure the ability of the model
to run online or in devices with lower memory support.
From Table I, we observe that memory requirement increases
with the addition of wavelet transformation. Table II gives a
comparison in terms of the number of trainable parameters,

(a) Pneumonia (b) COVID-19

(c) Pneumonia (d) COVID-19

Fig. 2: Class-activation heatmaps are generated, where (a), (b)
are using DenseNet121 and (c), (d) are using MobileNetV2.

non trainable parameters, extracted features, memory size,
and time required for the classification. As the number of
extracted features of the model which uses MobileNetV2
for feature extraction is higher, it requires more time to
train the model. Thus, the combination of pre-processing,
wavelet, and MobileNetV2 provide better results and lower
memory requirement in comparison to other combination.
It can be concluded that the combination of pre-processing
with MobileNetV2 and wavelet is better than the one using
DenseNet121 in conjunction with pre-processing and wavelet
transform. Our proposed method is better than existing
methods as it provides higher accuracy, lower memory
requirement, and feature details of the x-ray images. There is
a scope of improvement by increasing the number of chest
x-ray images.

IV. CONCLUSION

In this work, we have proposed a method of chest
x-ray image classification using wavelet transform and
DenseNet121/MobileNetV2 based features in order to iden-
tify COVID-19 pneumonia. The images have been pre-
processed using histogram equalization and edge-detection.
Subsequently, features are extracted from wavelet decompo-
sition and two different pre-trained neural networks, namely
MobileNetV2 and DenseNet121. The features have been ex-
tracted from publicly available 2,940 chest x-ray images
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TABLE II: Parameters and Time analysis of 3 class classification for two different setups

Method Total
Parameters

Trainable
Parameters

Non-trainable
Parameters

Extracted
Features

Time Size

Preprocesing+Wavelet+DenseNet121 7,037,504 6,953,856 83,648 100,352 5min 8sec 2520.79 MB

Preprocesing+Wavelet+MobileNetV2 2,257,984 2,223,872 34,112 112,896 5min 17sec 2468.66 MB

containing 940 cases of COVID-19 pneumonia. It has been
shown that using pre-processing and wavelet-based features
in conjunction with the neural network-based features can
yield superior detection as compared to using the latter only.
Overall, the best performance has been obtained employing
MobileNetV2 with pre-processing and wavelet transform fol-
lowed by the use of DenseNet121 because of the higher feature
dimension of the former. The computational performance of
the different approaches has also been analyzed. There is scope
for further investigations using additional COVID-19 positive
chest x-ray images and wavelet transforms with improved
directionalities and redundancy.
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