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Background & Objectives

The airfoil shape is responsible for producing lift and drag for

wind turbines, aircraft wings, and ship rudders. Therefore, the

precision of the lift coefficient (CL) and drag coefficient (CD) has

a significant impact on the airfoil design process. The analysis

of the flow field tends to be the most computationally intensive

and time-consuming part of the process. Because of

• massive computational resources needed, 

especially with the increased number of DOFs;

• for the final results, the machine experience 

gained during the simulation is lost.

Trained artificial neural network (ANN) models have recently
gained attention for learning the responses of large, complex,
and nonlinear systems[1]. Previous studies that used ANN
models to predict aerodynamic characteristics relied heavily on
different CFD simulation software tools to generate training
data[2,3,4,5]. However, CFD simulation software tools have
certain real-world limitations. Consequently, ANN models
generated from these data will eventually mimic those
limitations because the accuracy of the ANN is heavily
dependent on the data quality during the training phase.
Therefore, the goal of this study is

• to use reliable training data from wind turbine 
experiment[6];

• to reduce extensive dependence 
on software packages;

• to reduce the time needed to solve.
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Figure 6: The (a) pressure and (b) velocity contours of NACA 0012 

airfoil at 7◦ angle of attack (α) with Reynolds number (Re) of 1.6×105

using three turbulence models.
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Results & Discussion
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ANN model
No. of hidden 

layers
No. of nodes

MSE

CL CD

Model 1 6 80 0.014979 0.00142

Model 2 6 128 0.01353 0.00062

Model 3 5 64 0.019839 0.0018

Model 4 6 256 0.017756 0.00088

Model 5 5 256 0.019991 0.00114

Table 2 presents the MSE of the models and the network architectures. Model 2,

with six hidden layers and 128 nodes, performed better, and the MSE values of

CL and CD were 0.01353 and 0.00062, respectively. Therefore, Model 2 was

used to predict the aerodynamic characteristics. The models training loss is

shown in Fig. 7a. From Table 2 it is evident that model 2 does better, it’s training

and validation loss is shown in Fig. 7b.

RANS-CFD versus ANN

Conclusions

This study developed a neural network model to predict airfoil

aerodynamic characteristics using experimental data to test the

feasibility of deep learning in flow analysis. To validate the ANN

model, RANS-based CFD simulations with three turbulence

models in a two-dimensional domain were performed. Evidently,

when compared with the experimental data, the ANN model

easily outperformed each of the three turbulence models. More

specifically, when the angle of attack (α) was in the range of 11°-

30°, the ANN model produced the most precise outcome or, in

other words, had the least amount of error compared to all other

turbulence models. When α was in 0°-10° range, different

turbulence models performed better. Even at α (0°-10°), the ANN

model outperformed all other turbulence models. Additionally, the

ANN model successfully predicted the stall shape for airfoil,

whereas the turbulence models failed to do the same. Also, The

ANN model used much less computational power than RANS-

based CFD analysis. Thus, the proposed ANN approach can

accurately predict the aerodynamic characteristics of marine

rudders and other airfoil-shaped geometries.
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In this study, an artificial neural network (ANN)-based method is

proposed to predict the aerodynamic characteristics of NACA

0012 airfoil, approximating the flow around the airfoil as a
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numerical domain using RANS-CFD simulations and

experimental data, showing that the proposed ANN approach is

in good agreement for predicting the stall shape and

aerodynamic characteristics at an angle of attack (α) ranging

from (0° ≤ α ≤ 30°).

Table 2: ANN performance for five different models.
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Figure 7: (a) Training losses of ANN’s after 300 epochs, (b) Training & validation 

losses after 300 epochs for Model 2.

Range

(α)

k-ϵ Realizable k-ω SST Spalart-Allmaras ANN

CL CD CL CD CL CD CL CD

0 - 10 0.002833 0.000324 0.000986 1.78x10-05 0.000707 2.7x10-05 0.011164 6.92x10-05

11 - 20 0.419295 0.003171 0.51439 0.00192 0.470994 0.004738 0.001845 0.000132

21 - 30 0.010106 0.001164 0.008748 0.000771 0.010752 0.000347 0.001442 1.22x10-05

Figure 8: Result comparisons of NACA 0012 with Reynolds number (Re) of 

1.6 x 105 for (a) lift coefficient (CL), (b) drag coefficient (CD).

Table 3: The MSE of turbulence models and ANN model.
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The MSE of turbulence models and ANN model for NACA 0012 airfoil

were calculated, shown in Table 3. The curve of the lift coefficient (CL) and

the drag coefficient (CD) for NACA 0012 airfoil is shown in Fig. 8, for angle

of attack (α) ranging from 0◦- 30◦, predicted with ANN model, computed

with three turbulence models and compared with experimental data. In

most of the cases, The Spalart-Allmaras and the k-ω SST turbulence

model did better calculating CL and CD when the angle of attack (α) was in

the range of 0◦- 10◦. However, for α ranging from 11◦- 30◦ ANN model

outperformed all the turbulence model's results while predicting the shape

of the stall as well whereas turbulence models failed to do so.
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1. Dataset preparation

1. The dataset includes airfoil coordinates 

(X, Y), angle of attack (α), Reynolds 

number (Re), lift coefficient (CL), and 

drag coefficient (CD).

2. An online database for airfoil profile 

generator, was used to generate a total 

of 201 airfoil coordinates (X, Y) for 

NACA 0012 airfoil.

3. Wind turbine experimental data[6] from 

was used for the rest of the features, 

where for α (0◦ ≤ α ≤ 180◦) CL and CD

was obtained at different values of Re

(104 ≤ Re ≤ 107) for NACA 0012 airfoil.

2. Dataset splitting

1. A total of 606 observations were used.

2. 16 observations with Re of 1.6x105 were 

used as test data.

3. Of the remaining observations of 590, 

10% were used to validate the model.

Table 1: Partition of the dataset

3. Network architecture

Figure 5: ANN architecture used in the 

aerodynamic  characteristics prediction 

network.

4. ANN models training

1.Five different ANN models were 

trained.

2.The models were trained for 300 

epochs.

3. All training data fed to the network in 

batches of 8 observations before the 

weights were allowed to update using the 

batch’s Mean Square Error (MSE).

5. Prediction

1.Among five ANN models, the best 

performed model is used to predict the 

aerodynamic characteristics.

2.The model is used to predict the lift 

coefficient (CL) and drag coefficient (CD) 

of NACA 0012 airfoil at Reylonds number 

(Re) of 1.5x105 for angle of attacks (α) 

ranging from 0◦ to 30◦.

Comparison

1.Numerical simulations of NACA 0012 

were conducted using three different 

turbulence models for angle of attacks 

(α) ranging from 0◦ to 30◦.

1.The simulations were carried out using 

Ansys fluent students version

2022.
Dataset Observations

Training data 530

Validation data 60

Test data 16

Total 606

1. Geometric modeling

1. NACA 0012 airfoil section is used.

2. Airfoil tools is used to generate 201 airfoil 

coordinates.

Figure 1: Geometry of NACA 0012 airfoil with 

0.154 m chord length.

2. Meshing

Figure 2: (a) Mesh around NACA 0012 

airfoil and (b) detail close to the NACA 

0012 airfoil.

(a) (b)

3. Boundary conditions

Figure 3: Flow past NACA 0012 airfoil 

simulation in the C-type domain.

4. Turbulence models

1. Realizable k - ε model

2. SST k - ω model

3. Spalart - Allmaras model

6. Numerical simulation

1. Numerical simulations of NACA 

0012 were conducted using three different 

turbulence models for angle of attacks (α) 

ranging from 0◦ to 30◦.

2. The simulations were carried out using 

Ansys fluent students version 2022.

5. Mesh convergence study

Figure 4: Mesh convergence study for 

NACA 0012 airfoil using the Realizable 

k-ε model.

*76400 cells are 

required  for mesh 

independent solution.Re = 1.6 x 105

α = 5◦
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